Elektronische_Last/Source/FanControl.cpp

174 lines
5.2 KiB
C++

/*
* FanControl.cpp
*
* Created on: 27.07.2023
* Author: Carst
*/
#include <stm32g0xx_ll_bus.h>
#include <stm32g0xx_ll_gpio.h>
#include <stm32g0xx_ll_tim.h>
#include "FanControl.hpp"
#define TIMER_RELOAD_VALUE 2559UL
#define DUTY_TO_TIM_VALUE(x) TIMER_RELOAD_VALUE * (x) / 100U
static std::uint32_t fan_speed;
static std::uint32_t duty;
extern "C" void TIM14_IRQHandler(void)
{
LL_TIM_ClearFlag_UPDATE(TIM14);
fan_speed = LL_TIM_GetCounter(TIM2);
LL_TIM_SetCounter(TIM2, 0UL);
}
extern "C" void FanControl_SetDuty(uint32_t d)
{
duty = DUTY_TO_TIM_VALUE(d);
}
namespace ElektronischeLast
{
static const std::uint16_t stuetzpunkte [5][2] =
{
{ 25U, DUTY_TO_TIM_VALUE(0U) },
{ 40U, DUTY_TO_TIM_VALUE(30U) },
{ 50U, DUTY_TO_TIM_VALUE(50U) },
{ 65U, DUTY_TO_TIM_VALUE(75U) },
{ 80U, DUTY_TO_TIM_VALUE(100U) }
};
void FanControl::init(void)
{
/* TIM3 PWM-Output
* 25kHz (Vorgabe Intel). Geschwindigkeit wird über Tastverhältnis geregelt.
*/
LL_TIM_InitTypeDef TIM_InitStruct = {
.Prescaler = 0UL,
.CounterMode = LL_TIM_COUNTERMODE_UP,
.Autoreload = TIMER_RELOAD_VALUE,
.ClockDivision = LL_TIM_CLOCKDIVISION_DIV1,
};
LL_TIM_Init(TIM3, &TIM_InitStruct);
LL_TIM_DisableARRPreload(TIM3);
LL_TIM_OC_EnablePreload(TIM3, LL_TIM_CHANNEL_CH1);
LL_TIM_OC_InitTypeDef TIM_OC_InitStruct = {
.OCMode = LL_TIM_OCMODE_PWM1,
.OCState = LL_TIM_OCSTATE_ENABLE,
.OCNState = LL_TIM_OCSTATE_DISABLE,
.CompareValue = 0UL,
.OCPolarity = LL_TIM_OCPOLARITY_HIGH,
};
LL_TIM_OC_Init(TIM3, LL_TIM_CHANNEL_CH1, &TIM_OC_InitStruct);
LL_TIM_OC_DisableFast(TIM3, LL_TIM_CHANNEL_CH1);
LL_TIM_SetTriggerOutput(TIM3, LL_TIM_TRGO_RESET);
LL_TIM_DisableMasterSlaveMode(TIM3);
/* TIM2 Input Capture zur Messung der Geschwindigkeit.
*/
TIM_InitStruct.Prescaler = 0;
TIM_InitStruct.CounterMode = LL_TIM_COUNTERMODE_UP;
TIM_InitStruct.Autoreload = UINT32_MAX;
TIM_InitStruct.ClockDivision = LL_TIM_CLOCKDIVISION_DIV1;
LL_TIM_Init(TIM2, &TIM_InitStruct);
LL_TIM_DisableARRPreload(TIM2);
LL_TIM_ConfigETR(TIM2, LL_TIM_ETR_POLARITY_NONINVERTED, LL_TIM_ETR_PRESCALER_DIV1, LL_TIM_ETR_FILTER_FDIV1);
LL_TIM_SetClockSource(TIM2, LL_TIM_CLOCKSOURCE_EXT_MODE2);
LL_TIM_SetTriggerOutput(TIM2, LL_TIM_TRGO_RESET);
LL_TIM_DisableMasterSlaveMode(TIM2);
LL_TIM_IC_SetActiveInput(TIM2, LL_TIM_CHANNEL_CH1, LL_TIM_ACTIVEINPUT_DIRECTTI);
LL_TIM_IC_SetPrescaler(TIM2, LL_TIM_CHANNEL_CH1, LL_TIM_ICPSC_DIV1);
LL_TIM_IC_SetFilter(TIM2, LL_TIM_CHANNEL_CH1, LL_TIM_IC_FILTER_FDIV1);
LL_TIM_IC_SetPolarity(TIM2, LL_TIM_CHANNEL_CH1, LL_TIM_IC_POLARITY_RISING);
LL_TIM_SetRemap(TIM2, LL_TIM_TIM2_TI1_RMP_COMP1);
/* TIM14 1s ISR */
TIM_InitStruct.Prescaler = 15999;
TIM_InitStruct.CounterMode = LL_TIM_COUNTERMODE_UP;
TIM_InitStruct.Autoreload = 3999;
TIM_InitStruct.ClockDivision = LL_TIM_CLOCKDIVISION_DIV1;
LL_TIM_Init(TIM14, &TIM_InitStruct);
LL_TIM_DisableARRPreload(TIM14);
LL_TIM_EnableIT_UPDATE(TIM14);
/* TIM3 GPIO Configuration
* PC6 ------> TIM3_CH1
*/
LL_GPIO_InitTypeDef GPIO_InitStruct = {
.Pin = LL_GPIO_PIN_6,
.Mode = LL_GPIO_MODE_ALTERNATE,
.Speed = LL_GPIO_SPEED_FREQ_LOW,
.OutputType = LL_GPIO_OUTPUT_PUSHPULL,
.Pull = LL_GPIO_PULL_NO,
.Alternate = LL_GPIO_AF_1,
};
LL_GPIO_Init(GPIOC, &GPIO_InitStruct);
/*T IM2 GPIO Configuration
* PA15 ------> TIM2_CH1
*/
GPIO_InitStruct.Pin = LL_GPIO_PIN_15;
GPIO_InitStruct.Pull = LL_GPIO_PULL_UP;
GPIO_InitStruct.Alternate = LL_GPIO_AF_2;
LL_GPIO_Init(GPIOA, &GPIO_InitStruct);
LL_TIM_EnableCounter(TIM2);
LL_TIM_EnableCounter(TIM3);
LL_TIM_EnableCounter(TIM14);
this->last_compare = 0UL;
this->last_temp = 0UL;
NVIC_SetPriority(TIM14_IRQn, 0);
NVIC_EnableIRQ(TIM14_IRQn);
}
void FanControl::run(std::uint32_t temp)
{
if(duty != 0U)
{
LL_TIM_OC_SetCompareCH1(TIM3, duty);
}
else
{
if(this->last_temp != temp)
{
std::uint16_t cv = this->get_compare_value(temp);
if(this->last_compare != cv)
{
cv = (this->last_compare + cv) / 2U;
LL_TIM_OC_SetCompareCH1(TIM3, cv);
this->last_compare = cv;
}
this->last_temp = temp;
}
}
}
std::uint16_t FanControl::get_compare_value(std::uint16_t temp)
{
std::uint16_t cv = TIMER_RELOAD_VALUE;
for(std::uint32_t i = 0UL; i < sizeof(stuetzpunkte) / sizeof(stuetzpunkte[0]); i++)
{
if(temp < stuetzpunkte[i][0])
{
cv = stuetzpunkte[i][1];
break;
}
}
return cv;
}
/**
* @brief Lüftergeschwindigkeit in Umdrehungen pro Minute.
* @details Das Tachosignal gibt zwei Impule pro Umdrehung heraus.
* Die Messdauer der Pulsanzahl beträgt eine Miunute.
* v = pulse / 2 * 60 => erst mal 60, damit es ganuer wird
* wegen Datentyp ungenauigkeit beim Teilen.
* @return
*/
std::uint32_t FanControl::get_speed(void)
{
return fan_speed * 60UL / 2UL;
}
}